

50.0 um

Interactions between BaCO₃ and **OPC/BFS composite cements at 20 ºC and 60 C and 60º C**

C.A. Utton^a, E. Gallucci^b, J. Hill^c, and N.B. Milestone^a

a University of Sheffield, Immobilisation Science Laboratory, Department of Engineering Materials, Mappin Street, Sheffield S1 3JD, UK b Ecole Polytechnique Federale de Lausanne, Laboratory of Construction Materials,, CH-1015 Lausanne $\,{}$ AMEC NNC Ltd, Birchwood, Cheshire, WA3 6GN, UK

Workshop on Mechanisms and Modelling of Waste/Cement Interactions Le Croisic, France, October 2008

Outline Outline

- Introduction
	- –Why BaC O_3 ?
	- Earlier work
- Experimental work
- Results and Discussion
- Conclusions
- Acknowledgments

Introduction

THORP Plant and BaCO₃

THORP process for fuel reprocessing dissolves spent fuel in $HNO₃$ releasing $14CO₂$. Gases are caustic scrubbed to remove $^{14} \text{CO}_2$ forming sodium carbonate. Solution is treated with $Ba(NO₃)₂$, precipitating Ba¹⁴CO₃, Final waste stream contains 20-30wt% Ba $\rm ^{14}CO_{3}$ in a salt solution.

14C t½ = 5730 years

Fв

BaCO3 slurry

- •Classified as Intermediate level waste (ILW)
- •• Dewatered to about 20% BaCO₃ solids in a alkaline solution containing \sim 10% sodium nitrate/sodium nitrite
- • Encapsulated in a BFS:OPC composite cement and stored in 500l drums
- •What reactions might occur?
- •What is likely durability?

 $50.0 \text{ }\mu\text{m}$

What happens to the What happens to the BaCO₃ in cement?

- Literature information on Ba salts in OPC is sparse
	- BaCO $_3$ added to C $_3$ A slows hydration with formation of hemicarbonate $\rm C_3$ A \cdot 0.5CaCO₃ \cdot 0.5Ca(OH)₂ \cdot 11.5H₂O containing 6% Ba(1)
	- Ba(NO $_3)_2$ reduces degree of hydration $^{\text{\tiny{(2)}}}$
	- BaSO $_4$ was formed along with BaCO $_3^{\left(2,3\right) }$

1. Dumitru et al. 10th ICCC Gothenburg, 1997, <u>3</u>, 5-9. 2 Ouki & Hills, Waste Manage., 2002, <u>22(</u>2), 147-151. 3 McWhinney et al. J. Environ. Sci. Health, 1990, <u>A25</u>(5), 463-477.

- •• OPC hydrated with $CaCO₃$, produces an AFm phase, calcium monocarboaluminate, C_4 AĈH₁₁ (Mc), which controls hydration⁽¹⁾
- •• Accelerates hydration of $C_3S^{(2-4)}$
- •• Some CaCO₃ incorporated in $C_3S^{(4)}$
- •• Maximum amount of $CaCO₃$ reacted is low \sim 2-3%
	- 1 Feldman et al., J. Am. Ceram. Soc., 1965, 48(1), 25-30.
	- 2 Ramachandran, 8th ICCC, Rio de Janeiro, 1986, 5, 178-182
	- 3 Ramachandran, Thermochim. Acta, 1988, 127, 385-394
	- 4 Ramachandran & Zhang, Il Cemento, 1986, <u>83</u>(3), 129-152.

Group II Compound Group II Compound Solubilities Solubilities

Solubility (°C) g/100cc Ksp(25°C)

CRC handbook of Chemistry and Physics

Experimental Experimental

- •• OPC and BFS:OPC 9:1 mixed with 0 and 30% BaCO $_3$ at w/s ratio of 0.37 hydrated at 20 and 60°C, 95% RH for times up to 2 $\,$ years
- • Examined by SEM/EDS, XRD and ICC (up to 72 hrs)
- \cdot C₃A, CaSO $_4$.2H $_2$ O, BaCO $_3$ in 1:1:1 ratio mixed and examined at 2 and 24 hours

OPC with 30wt% BaCO₃ w/s 0.37 cured at 20ºC between 24 hours and 360 days **Mc – Calcium monocarboaluminate, P – Ca(OH)** $_2$ **, W – BaCO** $_3$ **, B – BaSO** $_4$ **, e – ettringite**

BaCO3 in OPC

100% OPC with 30wt% BaCO₃ w/s 0.37 cured at 20 and 60ºC 360 days

e – ettringite, Mc – Calcium monocarboaluminate, P – Ca(OH)₂, W – BaCO₃, **B – BaSO4, Hg – Hydrogarnet-type phase**

50.0 um

BaCO_{3} in OPC

- Crystalline hydration products formed at 20ºC were Ca(OH)₂, C₃A.3CaSO₄ 32H₂O and $C_3A.CaCO_3.12H_2O$
- BaSO₄ formed from BaCO₃ and SO₄²⁻ ions from OPC releasing $CO₃²$
- Ettringite slowly converts to BaSO₄ and Mc.
- An increase in temperature sees loss of Mc and formation of a hydrogarnet phase
- •No specific carbonate phase observed at 60°C

9:1 BFS:OPC with 30wt% BaCO 3 cured at 60ºC between 24 hours and 360 days Mc – Calcium monocarboaluminate, W – BaCO 3, B – BaSO 4

9:1 BFS:OPC 30wt% BaCO3 cured at 20ºC and 60ºC 360 days Mc – Calcium monocarboaluminate, W – BaCO₃, B – **BaSO₄, P- Ca(OH)₂, Ht – Hydrotalcite, Hg - Hydrogarnet**

\textsf{BaCO}_3 in BFS:OPC **composite composite**

- • Similar products to OPC but with much less $Ca(OH)_2$.
- • \cdot Mc is stable at 60 \circ C, possibly due to lower pH and increased aluminium availability.
- \bullet • Smaller amounts of BaSO₄ formed reflecting lower SO_4^2 - available.
- •• Hydrotalcite formed from slag
- •• Hydrogarnet still formed as Mc decomposes.

The University

Of Sheffield.

1:1:1 C₃A:BaCO₃:CaSO₄.2H₂O w/s 1.0 cured for 2 hours and 24 hours at 20°C Mc – Calcium monocarboaluminate, P – Ca(OH) $_2$ **, W – BaCO** $_3$ **, B – BaSO** $_4$ **, G – gypsum, e – Ettringite**

50.0 um

C₃A:CaSO₄.2H₂O:BaCO₃

- • \cdot Both ettringite and BaSO₄ formed initially as C_3 A reacted rapidly
- •• With time, intensity of BaCO₃ peaks decreases with increase of BaSO₄. Mc forms as more available $CO₃²⁻$ in solution.
- Almost all gypsum has disappeared by 24 hours.

 $BACO_{3(s)} + SO₄²⁻_(aq) \rightarrow BASO₄ \downarrow + CO₃²⁻$

Microstructure in OPC with BaCO with BaCO 3

OPC with BaCO 3 cured for 720 days at 20ºC

A – anhydrous OPC, B – hydration rim containing traces of barium

Voids are formed as Voids are formed as OPC grains fully react OPC grains fully react

OPC with BaCO $_3$ cured for 720 days at 20°C. Voids contain precipitated Mc $\,$ identified using EDX and fine particulates of BaSO $_{\rm 4}$

BaCO₃ in BFS composite

9:1 BFS:OPC 30wt% BaCO3 20ºC 720 days A – unreacted BFS particle

BaCO₃ in OPC composites

- • \cdot Ettringite and BaSO₄ are formed simultaneously initially and compete for SO_4^2 ²⁻(aq)
- •• Small amount of Ba²⁺ incorporated in C-S-H
- •• Mc grows into voids formed from fully hydrated cement grains
- • Large amount of BFS not reacted and no voids formed.

ICC of BaCO₃ in OPC

Rate and total heat output for OPC with 30% BaCO $_3$ cured at 40°C $\,$ A- neat OPC, B – OPC with 30% BaCO $_3$, C- normalised OPC with 30% BaCO $_3$

OPC with 30% BaCO₃ **cured at 40 cured at 40º C**

- •• Initial reduction in $\mathsf{Q}_{\mathsf{max}}$ as insoluble BaSO₄ coats OPC particles
- •• Conversion of ettringite to BaSO₄ allows later hydration of C_3 A
- C_3 S hydration rate increased as fine BaCO₃ particles provide nucleii on which C-S-H can grow.
- •Ultimate total heat output increased.

Rate and total heat output for BaCO $_3$ in 9:1 BFS:OPC at 40ºC $\,$ A- neat 9:1 BFS:OPC, B – 9:1 BFS:OPC with 30wt% BaCO $_3$, C- normalised 9:1 BFS:OPC with 30wt% BaCO $_3$

BaCO $_3$ **addition to 9:1 BFS:OPC BFS:OPC**

- Much lower heat output
- •• Spike due to OPC hydration not present when BaCO_3 added.
- Heat output delayed initially but overall heat increased

BFS interaction with BFS interaction with BaCO 3

Heat output for BFS with and without BaCO $_3$ cured at 40°C. $\,$ A – BFS w/s 0.35, B – BFS w/s 0.5, C – BFS + 30wt% BaCO $_3$ w/s 0.35 $^\circ$

- • Very low heat output influenced by w/s ratio
- Initial wetting peak reduced
- •• Addition of BaCO₃increases amount of heat evolved.

Heats of hydration Heats of hydration

- •• With OPC Q_{max} is reduced but t_{max} remains the same
- • Normalised total heat evolved is greater with BaCO_{3}
- •Similar effect with 9:1 BFS:OPC
- $\bullet~\mathsf{BaCO}_3$ enhances hydration of slag

 $50.0 \text{ }\mu\text{m}$

Conclusions Conclusions

- •• Despite very low solubility, BaCO₃ is not inert
- All SO₄²⁻ converted into BaSO₄
- •Initially, BaCO₃ retards hydration of OPC but at later times provides increased hydration both of OPC and BFS
- $CO₃²$ released into solution forms monocarbonate which grows into voids
- With very high pH and elevated temperature, Mc is not stable and breaks down to form hydrogarnet.
- •No $CO₃²$ containing phase distinguished with OPC
- In 9:1 BFS:OPC composite, more hydration, Mc stable at 60 $\rm ^oC$ and along with hydrotalcite 'fix' $\rm CO_3^{2-}$ so $\rm ^{14}C$ unlikely to be released

Acknowledgements Acknowledgements

• Thanks to EPSRC (CASE award grant number 02300221), Nexia Solutions and the PMI Trust for funding