

Interactions between BaCO₃ and OPC/BFS composite cements at 20°C and 60°C

C.A. Utton^a, E. Gallucci^b, J. Hill^c, and N.B. <u>Milestone^a</u>

 ^a University of Sheffield, Immobilisation Science Laboratory, Department of Engineering Materials, Mappin Street, Sheffield S1 3JD, UK
^b Ecole Polytechnique Federale de Lausanne, Laboratory of Construction Materials,, CH-1015 Lausanne
^c AMEC NNC Ltd, Birchwood, Cheshire, WA3 6GN, UK

Workshop on Mechanisms and Modelling of Waste/Cement Interactions Le Croisic, France, October 2008

Outline

- Introduction
 - Why BaCO₃?
 - Earlier work
- Experimental work
- Results and Discussion
- Conclusions
- Acknowledgments

Introduction

THORP Plant and BaCO₃

THORP process for fuel reprocessing dissolves spent fuel in HNO₃ releasing ${}^{14}CO_2$. Gases are caustic scrubbed to remove ${}^{14}CO_2$ forming sodium carbonate. Solution is treated with Ba(NO₃)₂, precipitating Ba ${}^{14}CO_3$, Final waste stream contains 20-30wt% Ba ${}^{14}CO_3$ in a salt solution.

¹⁴C $t_{1/2}$ = 5730 years

PB

BaCO₃ slurry

- Classified as Intermediate level waste (ILW)
- Dewatered to about 20% BaCO₃ solids in a alkaline solution containing ~ 10% sodium nitrate/sodium nitrite
- Encapsulated in a BFS:OPC composite cement and stored in 500l drums
- What reactions might occur?
- What is likely durability?

What happens to the BaCO₃ in cement?

- Literature information on Ba salts in OPC is sparse
 - BaCO₃ added to C₃A slows hydration with formation of hemicarbonate C₃A·0.5CaCO₃·0.5Ca(OH)₂·11.5H₂O containing 6% Ba⁽¹⁾
 - Ba(NO₃)₂ reduces degree of hydration⁽²⁾
 - BaSO₄ was formed along with BaCO₃^(2,3)

Dumitru et al. 10th ICCC Gothenburg, 1997, <u>3</u>, 5-9.
Ouki & Hills, Waste Manage., 2002, <u>22(2)</u>, 147-151.
McWhinney et al. J. Environ. Sci. Health, 1990, <u>A25(5)</u>, 463-477.

- OPC hydrated with $CaCO_3$, produces an AFm phase, calcium monocarboaluminate, $C_4A\hat{C}H_{11}$ (Mc), which controls hydration⁽¹⁾
- Accelerates hydration of C₃S⁽²⁻⁴⁾
- Some CaCO₃ incorporated in C₃S⁽⁴⁾
- Maximum amount of CaCO₃ reacted is low ~ 2-3%
 - 1 Feldman et al., J. Am. Ceram. Soc., 1965, 48(1), 25-30.
 - 2 Ramachandran, 8th ICCC, Rio de Janeiro, 1986, 5, 178-182
 - 3 Ramachandran, Thermochim. Acta, 1988, 127, 385-394
 - 4 Ramachandran & Zhang, Il Cemento, 1986, 83(3), 129-152.

Group II Compound Solubilities

Solubility (°C) g/100cc

Ksp(25°C)

Ca(OH) ₂	0.160 ²⁰	0.077 ¹⁰⁰	5.02 x10 ⁻⁶
CaCO ₃	0.00066 ²⁰	0.0018 ⁷⁵	3.36 x10 ⁻⁹
$CaSO_4.2H_2O$	0.241 ²⁰	0.222 ¹⁰⁰	1.96 x10 ⁻⁵
$CaSO_4.0.5H_2O$	0.30 ²⁰		4.27 x 10 ⁻⁵
CaSO ₄	0.209 ³⁰	0.162 ¹⁰⁰	2.36 x 10 ⁻⁵
Sr(OH) ₂	2.25 ²⁵	21.83 ¹⁰⁰	6.40 x10 ⁻³
SrCO ₃	0.0003420	0.065 ¹⁰⁰	5.60 x10 ⁻¹⁰
SrSO ₄	0.0135 ²⁵		3.44 x10 ⁻⁷
$Ba(OH)_2.8H_2O$	4.91 ²⁵	94.778	2.55 x10 ⁻⁴
BaCO ₃	0.0014 ²⁰	0.006 ¹⁰⁰	2.58 x10 ⁻⁹
BaSO ₄	0.0003120	0.000336 ⁵⁰	1.08 x10 ⁻¹⁰

CRC handbook of Chemistry and Physics

Experimental

- OPC and BFS:OPC 9:1 mixed with 0 and 30% BaCO₃ at w/s ratio of 0.37 hydrated at 20 and 60°C, 95% RH for times up to 2 years
- Examined by SEM/EDS, XRD and ICC (up to 72 hrs)
- C₃A, CaSO₄.2H₂O, BaCO₃ in 1:1:1 ratio mixed and examined at 2 and 24 hours

OPC with 30wt% $BaCO_3$ w/s 0.37 cured at 20°C between 24 hours and 360 days Mc – Calcium monocarboaluminate, P – Ca(OH)₂, W – BaCO₃, B – BaSO₄, e – ettringite

BaCO₃ in OPC

100% OPC with 30wt% BaCO₃ w/s 0.37 cured at 20 and 60°C 360 days

e – ettringite, Mc – Calcium monocarboaluminate, P – Ca(OH)₂, W – BaCO₃, B – BaSO₄, Hg – Hydrogarnet-type phase

BaCO₃ in OPC

- Crystalline hydration products formed at 20°C were Ca(OH)₂, C₃A.3CaSO_{4.}32H₂O and C₃A.CaCO₃.12H₂O
- BaSO₄ formed from BaCO₃ and SO₄²⁻ ions from OPC releasing CO_3^{2-}
- Ettringite slowly converts to BaSO₄ and Mc.
- An increase in temperature sees loss of Mc and formation of a hydrogarnet phase
- No specific carbonate phase observed at 60°C

BaCO₃ in BFS:OPC composite

9:1 BFS:OPC with 30wt% BaCO₃ cured at 60°C between 24 hours and 360 days Mc – Calcium monocarboaluminate, W – BaCO₃, B – BaSO₄

9:1 BFS:OPC 30wt% BaCO₃ cured at 20°C and 60°C 360 days Mc – Calcium monocarboaluminate, W – BaCO₃, B – BaSO₄, P- Ca(OH)₂, Ht – Hydrotalcite, Hg - Hydrogarnet

BaCO₃ in BFS:OPC composite

- Similar products to OPC but with much less Ca(OH)₂.
- Mc is stable at 60°C, possibly due to lower pH and increased aluminium availability.
- Smaller amounts of BaSO₄ formed reflecting lower SO₄²⁻ available.
- Hydrotalcite formed from slag
- Hydrogarnet still formed as Mc decomposes.

1:1:1 $C_3A:BaCO_3:CaSO_4.2H_2O$ w/s 1.0 cured for 2 hours and 24 hours at 20°C Mc – Calcium monocarboaluminate, P – Ca(OH)₂, W – BaCO₃, B – BaSO₄, G – gypsum, e – Ettringite

$C_3A:CaSO_4.2H_2O:BaCO_3$

- Both ettringite and BaSO₄ formed initially as C₃A reacted rapidly
- With time, intensity of BaCO₃ peaks decreases with increase of BaSO₄. Mc forms as more available CO₃²⁻ in solution.
- Almost all gypsum has disappeared by 24 hours.

 $BaCO_{3(s)} + SO_4^{2-}_{(aq)} \rightarrow BaSO_4 \downarrow + CO_3^{2-}$

Microstructure in OPC with BaCO₃

OPC with BaCO₃ cured for 720 days at 20°C

A – anhydrous OPC, B – hydration rim containing traces of barium

Voids are formed as OPC grains fully react

OPC with $BaCO_3$ cured for 720 days at 20°C. Voids contain precipitated Mc identified using EDX and fine particulates of $BaSO_4$

BaCO₃ in BFS composite

9:1 BFS:OPC 30wt% BaCO₃ 20°C 720 days A – unreacted BFS particle

BaCO₃ in OPC composites

- Ettringite and $BaSO_4$ are formed simultaneously initially and compete for $SO_4^{2-}_{(aq)}$
- Small amount of Ba²⁺ incorporated in C-S-H
- Mc grows into voids formed from fully hydrated cement grains
- Large amount of BFS not reacted and no voids formed.

ICC of BaCO₃ in OPC

Rate and total heat output for OPC with 30% $BaCO_3$ cured at 40°C A- neat OPC, B – OPC with 30% $BaCO_3$, C- normalised OPC with 30% $BaCO_3$

OPC with 30% BaCO₃ cured at 40°C

- Initial reduction in Q_{max} as insoluble BaSO₄ coats OPC particles
- Conversion of ettringite to BaSO₄ allows later hydration of C₃A
- C₃S hydration rate increased as fine BaCO₃ particles provide nucleii on which C-S-H can grow.
- Ultimate total heat output increased.

Rate and total heat output for $BaCO_3$ in 9:1 BFS:OPC at 40°C A- neat 9:1 BFS:OPC, B – 9:1 BFS:OPC with 30wt% $BaCO_3$, C- normalised 9:1 BFS:OPC with 30wt% $BaCO_3$

BaCO₃ addition to 9:1 BFS:OPC

- Much lower heat output
- Spike due to OPC hydration not present when BaCO₃ added.
- Heat output delayed initially but overall heat increased

BFS interaction with BaCO₃

Heat output for BFS with and without $BaCO_3$ cured at 40°C. A – BFS w/s 0.35, B – BFS w/s 0.5, C – BFS + 30wt% BaCO₃ w/s 0.35

_ 50.0 μm

- Very low heat output influenced by w/s ratio
- Initial wetting peak reduced
- Addition of BaCO₃ increases amount of heat evolved.

Heats of hydration

- With OPC \mathbf{Q}_{max} is reduced but \mathbf{t}_{max} remains the same
- Normalised total heat evolved is greater with BaCO₃
- Similar effect with 9:1 BFS:OPC
- BaCO₃ enhances hydration of slag

Conclusions

- Despite very low solubility, BaCO₃ is not inert
- All SO₄²⁻ converted into BaSO₄
- Initially, BaCO₃ retards hydration of OPC but at later times provides increased hydration both of OPC and BFS
- CO₃²⁻ released into solution forms monocarbonate which grows into voids
- With very high pH and elevated temperature, Mc is not stable and breaks down to form hydrogarnet.
- No CO₃²⁻ containing phase distinguished with OPC
- In 9:1 BFS:OPC composite, more hydration, Mc stable at 60°C and along with hydrotalcite 'fix' CO₃²⁻ so ¹⁴C unlikely to be released

Acknowledgements

 Thanks to EPSRC (CASE award grant number 02300221), Nexia Solutions and the PMI Trust for funding